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A Meniscus Where Three Phases Coexist 
at Equilibrium: Microscopic Derivation of the 
Herring Relations 
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The geometrical characteristics of a meniscus between two phases are studied. In 
particular, the behavior of the contact angles as a function of the temperature 
is derived for SOS-type models. A microscopic derivation of the Herring 
relations is given within a continuuous Gaussian model. 
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1. I N T R O D U C T I O N  

Let us consider three coexisting phases in two dimensions for simplicity. 
Two situations may occur: one may observe a meniscus or a film of, say, 
B between A and C. The equilibrium conditions for a meniscus of sub- 
stance B between two other coexisting phases A and C relate the contact 
angles 01 and 02 as defined in Fig. 1 to the various surface tensions and 
their derivatives; these are the Herring relations,(l~ 

aAB(01) COS 01 + aBC(02) COS 02 

-- sin 01 a]B(01) -- sin 02a'~c(02) = aAc(O) 

O'AB(O1) sin 01 - ~Bc(02) sin 02 (1) 

+ o-;~(01) cos 01 - a'~c(02) cos 02 = ~;~c(0) 

where axy(.) denotes the surface tension of the interface between x and y, 
and a ' y ( . )  denotes its derivative with respect to the contact angle. The 
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Fig. 1. A meniscus with the two contact angles 0~ and 02. 

wetting transition corresponds to the appearance of a film characterized by 
01 = 02 = 0. The temperature at which this transition occurs is called the 
wetting temperature and is the solution of Antonov's equation 

~(o) + ~(o) = ~(o), ( r=  ~) 

for substances such that 0 (0 )=  o ( -  0). 
To describe on a microscopic basis such transitions, one needs a 

model for which the coexistence of several phases is possible within a 
certain range of temperature. One may therefore consider this problem for 
several models: Potts, Blume-Capel, etc. The appearance of the film within 
such models has already been studied/2 5) However, at least to our 
knowledge, the geometrical characteristics of the meniscus have not yet 
been considered. 

The simplest way to get preliminary results along this line is to study 
a meniscus within SOS-type models. The corresponding results are expec- 
ted to be valid at low temperatures. The advantage of this approximation 
is that we may exactly compute the surface tensions involved in the 
problem. This therefore leads directly to some predictions about the 
behavior of 01 and 02 as functions of the temperature T (Section 2). In 
order to get these results, we obviously need to assume the validity of 
relations (1). The aim of Section 3 is to give a microscopic derivation of 
relations (1) for a continuous Gaussian model. 
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2. SEMIPHENOIVIENOLOGICAL APPROACH 

Let us consider a meniscus. Within SOS-type models, the microscopic 
representation of the corresponding profiles will be given by random jumps 
distributed according to a certain probability measure. This measure is 
induced by the energetic cost of an interface and is therefore intimately 
connected to the corresponding Hamiltonian. One of the commonest is the 
Gaussian one, given by 

H(ho,..., hN) = NJ2 + J1 ~ (h,+ ~ - hi) 2 
i 

where J~ and J2 are the coupling constants which describe one interface, 
say AB. For the other two interfaces, we use the coupling constants J'l, J;_ 
for interface BC and J~', J~' for interface A C. 

For  such a model, it is known (6/ that 

0 ' -  (tAB(O) = J2 COS 0 -[- J1 tg 2 0 cos 2/3 cos 0 log 

where/3 is the inverse temperature. 
Introducing this relation and the corresponding ones for aAc(O) and 

aBc(O) into (l), we get 

tan 2 01 -- J2 -1- J2 - J2' 
J1 -I- J~/J;  

J1 
tan 0 2 = ~ t a n  0j 

and therefore 

1 1 flJ~ Ji  
I- 2(J1 + j ~ / e ; ) / 3  log ~j(---7- (2) 

(3) 

tan(01 + 02) 

[ ( J ,  + J ~ ) 3 / J , J ~ ] ' / z { J  2 + J ; -  Jj '  + r 1/(2fl)] log(flJ1J;/rcJ[')  } I/2 

J,  + J;  + J2 + J ;  - J~ '+ [1/(2/3)-1 log(/3J1J~/J;'7c ) 

which as a function of the temperature behaves as indicated in Fig. 2. 
The study of the wetting transitions leads to different regimes: 

(a) No wetting transition if 

J~J~ 
J2'-- J2 - J2 > - -  

2xeJ;' 
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Fig. 2. Plot of tan 01 and tan(0~ + 02) as functions of the temperature for the continuous 
Gaussian model. (A) two wetting transitions, (B) one wetting transition. 
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(b) 
T w if 

(c) 
T,, if 

Two wetting transitions and therefore two wetting temperatures 

Jl  J'l 
0 < J~' - J2 - J2 < - -  

2rreJ'l' 

One wetting transition and therefore one wetting temperature 

J~' - -  J 2  - J 2  < 0 

Expanding (2) as a function of T -  Tw, we get 

~ I V -  T.,[ 

which is typical of a first-order transition. A similar behavior has been 
found for other continuous SOS-type models. 

It should, however, be stressed that within the present context, a 
second-order transition may be found (e.g., restricted SOS model). 

3. M I C R O S C O P I C  A P P R O A C H  

In the preceding section, we derived the behavior of the contact angles 
0~ and 02 using the Herring relations (1). Let us now consider these 
relations from a microscopic point of view. The family of menisci with fixed 
volume V that we consider can be characterized by several random 
variables: we have the length N along the x axis, the upper part of the 
meniscus hi . . .  hN+ 1, and the lower part h'~ ..-h~v+ ~ (Fig. 3). 

Within the continuous Gaussian model, the corresponding probability 
measure is given by 

-- �9 h' N )  d f l ( h l  . h N + l , h ' i .  �9 N + l ,  

= ~ 1 exp[f iNaac(O) ] 

xexp --fl ~ [ J 2 + J l ( h , - h i + ~ ) 2 ] - f l  ~ [ J ; + J z ( h i - h i + l )  ] 
1 1 

xg) ( h i - h ; ) -  V c](hl)~(h I - - h N + , ) b ( h i ) g ) ( h ] - - h u + ~ )  
\ 1 

N + I  

x [ I  l{h,~h;} dhidh; (4) 
i = 1  

where 1A is a characteristic function which takes the value 1 if condition A 
is satisfied and 0 elsewhere, and Z is a normalization factor. 
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Fig. 3. Microscopic representation of a meniscus of length N. 

Among this family of menisci, the most probable one should in 
principle be characterized by contact angles which obey the Herring 
relations. This is precisely the object of the following result. 

T h e o r e m .  Among the family of menisci distributed according to 
(4), the most probable one has contact angles 01 and 02 which satisfy the 
Herring relations (1). 

Proof. Let us first fix the length N and let 

h'i=hi+xi, I~< i~<N+I  

We then have instead of (45) a Gaussian measure which couples the xi to 
the hi with the constraints xi~>0 for all i. The introduction of the step 
variables (ki = flJ,; k'i = f l J / )  

X~=(hi+,-hi)(kl+k' l )  1/2 with i = 1  ..... N 

ZN+I = -hN+l(kl +k'l)  1/2 

Zi+(N+l)=(Xi+l--Xi)N~11 with i=l , . . . ,N 

)~2N~- 2 ~ --XN+ IN~11 
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leads to 

d#(zl,'", Z2N+2, N) 

= Z  '{k',(k, +k'~)}~N+')/2exp{-[k2+k'2-d~c(O)]N} 

xexp • Z 2 - 2  2 ZiZi+N+, 
\k~ + k'~J t l 

X(~ Zi 3(ZN+I)b(Z2N+Z)3\N~+2 Zi 6 ~Xi+(N+l)-~ V 

2 N - 2  

• lq dz, 
i=l 

It remains to use the standard diagonalization procedure of Berlin and 
Kac I7) to obtain, defining 

rh= 2 1 \ k ~ , /  (-1)i+~ 
t 

where 

V~jZi 

~ ~ + ~  2 i ~ o s I ~  ,,~, ,~ ] 

+ sin (j-- 1 )(i -- 1 ) 

d# ~'-~2-~N+~)(exp{ [kz+k'2 aAc(O)]N})(k~k'~) -u'~+l)/2 

x 1] exp(-~l~/2)d~li6 Aj~lj) 6 Bj~]/ 
i = l  k 1 " ,  t 

\ 1 \ 1 

A.i-- {2 

B j =  {2 

Cg={2 

Dj= {2 

Ej={2 

\k~ +k',/  

\ k ,  + k',} 

t 1/2 N ~ 1 
(-1)J +' ~ vj, 

(-1) :+~ vj, N+, 

[ ~  ~ v ]t - 1 ~  
i=1 

1 \ k l + k ' l }  (I~)J+' 
i = l  

iVj ,  i +(N + l) 
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Let us now compute the asymptotic value of the normalization factor 

N>~2 
where 

2 N + 2  

ZN'v:(4klk'l)(N+t)/2C (k2+k'2)N f+~o~ i=~=1 d, ~1~/2 

Using a Fourier representation of the Dirac measures, we have 

ZN, =exp -- k 2 + k ; + 2 1 o g  N + O ( l o g N )  V 

x du dv dw ds dt 
-co 

xexp(itV) exp - 2 ~ -  1 

The integration gives 

ZN, v=exp  -- k 2 + k ; + ~ l o g  7r~ ]N+O(l~  QSsV2 

where Q55 is the fifth row and the fifth column element of the covariance 
matrix Q in (5). The asymptotic evaluation of Q55 leads to 

Zzv, v = e x p  - k2+k'2+Slog~T-)N-12N3kt+k~,+O(logN ) (6) 

Let us now consider a meniscus as the union of two droplets (hi/> 0, h'i ~< 0 
for i = 1,..., N + 1). Within this approximation, one easily gets 

V 

Z~v,V=Jo dV+ dV ~N,V,~N,V 6(V+ + V _ - V )  (7) 

where V+ (resp. VB_) is the volume of the upper (resp. lower) droplet and 
where ~N,V is the partition function of a droplet of length N and volume 
V. Within the Gaussian continuous model, it is known (6/ that 

iN, v+ = exp --k2N-- 12k~ - ~ -  ~- log ~- + O(log N) 
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An asymptotic evaluation of (7) leads directly to 

, N 1 klk'  1 12 V2 klk'l 
Zx, v=exp - ( k 2 + k z ) N - -  ~ og 7z 2 N3 k l + k ~  + O(log N) ]  (8) 

Comparing (8) with (6), one has that, asymptotically, the partition func- 
tion of a meniscus of volume V is equivalent to the partition function of the 
union of two droplets of appropriate volumes. One therefore deduces that 
the most probable meniscus is given by the union of the two most probable 
droplets. The shape of this meniscus is thus given by 

]~,= 6 ( i -  1 ) ( N -  i +  1 
(N 2 -  1)N 

~;_6(i- 1 ) ( N - i +  1 

kl 
V - -  

k I +k'~ 

kl 
V - -  

( N 2 -  1)N k2+k'l 

Now that we know the profile of the meniscus 
consider the sum over N. We have 

for a fixed length N, let us 

"-'~= E eflNaAc(O) ZN, V 
N>~ 2 

The term that maximizes this sum is asymptotically given for 

N = N ( V ) =  V1/2( 36kl,k',/(kl +k',), ,, ~1/2 
k2 + k2 - k2 + �89 log(klkl/~zkl )] 

This corresponds to the most probable length of the meniscus. It remains 
to derive the corresponding contact angles. This is obtained by a law of 
large numbers of the following form: 

tan O1 = lim 
~ o o  

1 ~<j'~N(V) j 

The results are 

i t 1 ~ 2 tan 01 = k2+k2-a~c(O!+�89176 )]w2 

k 1 
tan 02 = k~ tan 01 

These contact angles derived on a microscopic basis are identical to those 
derived from the Herring relations [cf. (2), (3)]. 
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To achieve the proof,  it remains  to show that  this concept  of most  
p robab le  profile f rom which we have der ived the value of contac t  angles 
makes  sense. This  means  tha t  one has to con t ro l  the f luctuat ions  of the 
profile with respect  to the mos t  p robab le  one. A s t anda rd  p rocedure  gives 

( ( N -  ( N )  ) 2 ) ~ O ( V  1/2) 

A reasoning  ana logous  to the one deve loped  in ref. 6 for one d rop le t  leads 

to 

( (h i -  ~i) ~) ~ O(N) 

for a fixed length N. 
These two results show indeed tha t  the relat ive f luctuat ions  can be 

kept  small. This achieves the p roo f  of the theorem.  

4, C O N C L U D I N G  R E M A R K S  

In this paper ,  we have verified the microscopic  val idi ty  of the Herr ing  

rela t ions within a Gauss i an  con t inuous  model .  I t  should  be stressed that  
our  mode l  is a ra ther  crude a p p r o x i m a t i o n  since it considers  the meniscus 
as a superpos i t ion  of three interfaces between two media.  The  s tudy of one 
meniscus as par t  of a three-phase  system a long this line remains  an 

interest ing open subject. 
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